ETMAG CORONALECTURE 3 Functions, elementary functions We begin 12:15

FUNCTIONS

We consider functions $f: X \to Y$ where X and Y are subsets of \mathbb{R} . Usually we choose X as large as possible (the so-called *natural domain* of the function *f*).

It is often convenient to choose Y = f(X). Then *f* is a surjection (*onto*) and Y is called the *set of values* for *f*.

Everything said in EIDMA lecture about functions in general applies here.

Monotonic functions are defined in the same way as monotonic sequences. In fact, every sequence is a function, so it would be better to define monotonic functions first. But we covered sequences first, so ...

Definition.

A function is called *constant on A*, $A \subseteq X$, iff $(\exists c \in \mathbb{R}) (\forall x \in A) f(x) = c$

Definition.

A function $f: X \to Y$ is called *increasing on A, A \subseteq X,* iff $(\forall x, y \in A) (x < y \Rightarrow f(x) < (f(y))$

In a similar way we define *nondecreasing* functions.

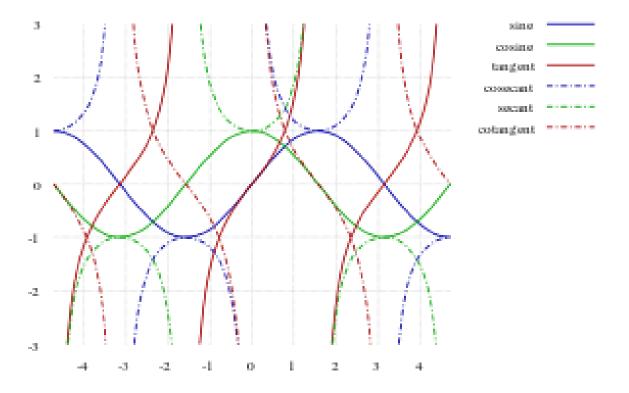
Example.

The function floor, [x] = the largest integer l s.t. $l \le x$ is globally nondecreasing. It is constant on every interval of the form [k;k+1].

Example.

Consider tan x. The domain (or natural domain), of tan x is

 $\mathbb{R} \setminus \{k\pi + \frac{\pi}{2} | k \in \mathbb{Z}\}\$. *tan x* is increasing on every interval (a,b) which is contained in its domain but it is not increasing *globally*. (graph from Wikipedia).



Definition.

A function is called *decreasing on A, A* \subseteq *X*, iff

$$(\forall x, y \in A) (x < y \Rightarrow f(x) > (f(y))$$

In a similar way we define *nonincreasing* functions.

Example.

Sine is increasing on every closed interval of the form $[2k\pi - \frac{\pi}{2}; 2k\pi + \frac{\pi}{2}]$ and decreasing on every closed interval of the form $[2k\pi + \frac{\pi}{2}; 2k\pi - \frac{\pi}{2}]$, where *k* is an integer.

Comprehension.

What can you say about a set A and a function f if

- f is at the same time nonincreasing and nondecreasing on A
- f is at the same time increasing and decreasing on A

Definition. (*Reminder*)

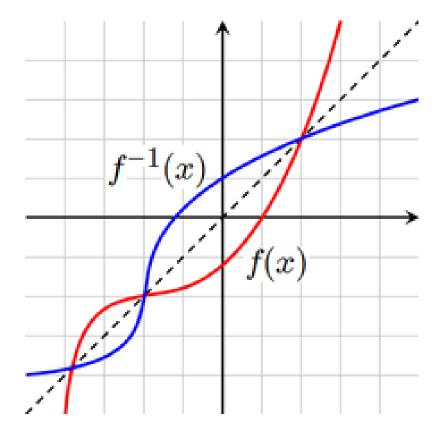
Given a function $f: X \rightarrow Y$, if there exists a function $g: Y \rightarrow X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$ then it is called the *inverse function* for *f* or *f*-*inverse* and is denoted by f^{-1} .

Fact.

- *f* is the inverse for *g* iff *g* is the inverse for *f*.
- *f* is the inverse for *g* iff for every $x \in X$ and $y \in Y$ $f(x)=y \Leftrightarrow g(y)=x$
- *f* is invertible iff *f* is "one-to-one" and "onto".
- the graph of

Fact.

The graph of the inverse function of *f* is the mirror reflection of the graph of *f* in the line y=x. (Image from Wikipedia.)



ELEMENTARY FUNCTIONS

Definition.

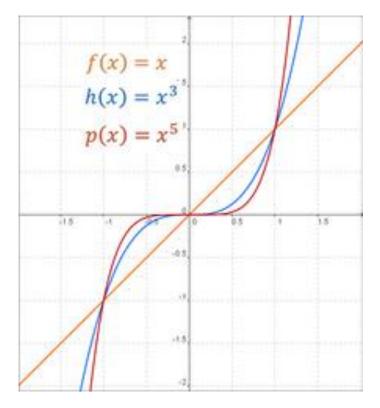
The set of *elementary* functions consists of:

- constant functions (constant on \mathbb{R})
- *id* function (id(x) = x), the "do nothing" function
- trigonometric functions
- power functions (*x^b* where *b* is a real number, not necessarily an integer)
- exponential functions
- functions obtained by arithmetic operations on elementary functions (sums, product, quotients ...)
- compositions of elementary functions
- inverses of elementary functions

Fact.

- Applying only addition and multiplication to constant functions and the identity function we get all polynomials.
- Applying division to polynomials we get rational functions.

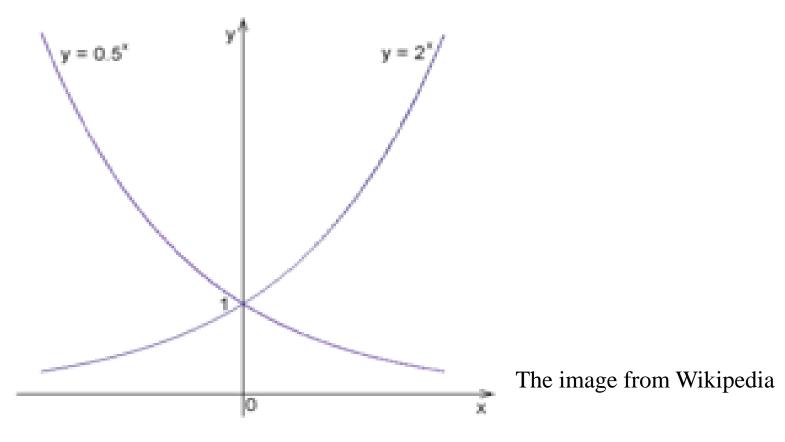
Power functions are functions of the form $f(x) = x^a$ where *a* is a constant. If *a*=1, x^a becomes the identity function.



The image from Wikipedia

Exponential functions are functions of the form $f(x) = a^x$ where *a* is a positive constant different from 1.

If a>1 then a^x is increasing, otherwise it is decreasing.



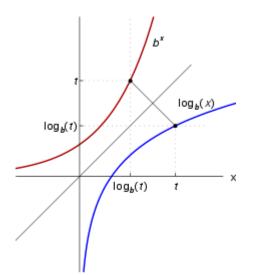
Exponential functions should not be confused with *power functions*.

Exponential functions have a constant base, the variable, x, is in the exponent, as in 2^x .

In power functions the variable is in the base, the exponent is constant, as in x^2 .

Fact. (Properties of powers)

- $a^{b}a^{c} = a^{b+c}$, this implies $a^{0}=1$ and $a^{-b} = \frac{1}{a^{b}}$
- $(a^b)^c = a^{bc}$
- $a^b c^b = (ac)^b$



The image from Wikipedia. In this example b>1.

Definition.

The inverse function to b^x is called the *logarithmic* function to base *b* and is denoted by $log_b x$.

Fact.

- Since the domain of b^x is ℝ and the set of values is (0;∞), the domain of log_b is (0;∞) and the range is ℝ.
- *b* must be positive and different from 1.

Examples.

- 1. $log_b b = 1$ for every b for which the expression makes sense
- 2. $log_b 1 = 0$
- *3.* $log_{10}100 = 2$
- 4. $log_{100}10 = 0.5$
- 5. $log_2 1024 = 10$

Theorem. (Properties of the logarithmic function)

1. if b>1 then $log_b x$ is increasing, if b<1 then $log_b x$ is decreasing

2.
$$b^{\log_b x} = x$$
 and $\log_b b^x = x$

- 3. $log_b xy = log_b x + log_b y$, because $b^{\log_b xy} = xy = b^{\log_b x} b^{\log_b y}$ = $b^{\log_b x + \log_b y}$
- 4. The last formula implies $log_b \frac{x}{y} = log_b x log_b y$
- 5. $log_b x^a = a \ log_b x$, because $b^{log_b x^a} = x^a = (b^{log_b x})^a = b^{alog_b x}$
- 6. (Change of base) $\frac{\log_b x}{\log_b y} = \log_y x$

Theorem. (Properties of the logarithmic function).

1. if b>1 then $log_b x$ is increasing (if b<1 then $log_b x$ is decreasing)

2.
$$b^{\log_b x} = x$$
 and $\log_b b^x = x$

- 3. $log_b xy = log_b x + log_b y$, because $b^{\log_b xy} = xy = b^{\log_b x} b^{\log_b y}$ = $b^{\log_b x + \log_b y}$
- 4. The last formula implies $log_b \frac{x}{y} = log_b x log_b y$
- 5. $log_b x^a = a \ log_b x$, because $b^{log_b x^a} = x^a = (b^{log_b x})^a = b^{alog_b x}$
- 6. (Change of base) $\frac{\log_b x}{\log_b y} = \log_y x$

Comprehension.

- 1. Prove property 2
- 2. Prove the change of base property
- 3. If (a_n) is a geometric sequence what type is $(log_b a_n)$?

Inverse trigonometric functions source - Wikipedia

Name	Usual notation	Definition	Domain of <i>x</i> for real result	Range of usual principal value (<u>radians</u>)	Range of usual principal value (<u>degrees</u>)
arcsine	$y = \arcsin(x)$	x = <u>sin</u> (y)	$-1 \le x \le 1$	$\frac{-\pi/2 \le y \le \pi/2}{2}$	$-90^{\circ} \le y \le 90^{\circ}$
arccosine	$y = \arccos(x)$	$x = \underline{\cos}(y)$	$-1 \le x \le 1$	$0 \le y \le \pi$	$0^{\circ} \le y \le 180^{\circ}$
arctangent	y = arctan(x)	x = <u>tan</u> (y)	all real numbers	$\frac{-\pi/2 < y < \pi/}{2}$	-90° < <i>y</i> < 90°
arccotangent	$y = \operatorname{arccot}(x)$	$x = \underline{\text{cot}}(y)$	all real numbers	$0 < y < \pi$	0° < <i>y</i> < 180°

More about cyclometric functions in the old presentation.

Hyperbolic functions:

- Hyperbolic sine: $\sinh x = \frac{e^x e^{-x}}{2}$
- Hyperbolic cosine: $\cosh x = \frac{e^x + e^{-x}}{2}$
- Hyperbolic tangent: $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Hyperbolic cotangent: for $x \neq 0$, $\operatorname{coth} x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x e^{-x}}$

Fact.

Just like x=cos *t* and y=sin *t* satisfy the equation of the unit circle, $x^2+y^2=1$ so x=cosh *t* and y=sinh *t* satisfy the equation of the equilateral hyperbola, $x^2-y^2=1$.

In fact:

$$\left(\frac{e^t + e^{-t}}{2}\right)^2 - \left(\frac{e^t - e^{-t}}{2}\right)^2 = \frac{e^{2t} + 2 + e^{-2t}}{4} - \frac{e^{2t} - 2 + e^{-2t}}{4} = \frac{4}{4} = 1$$